`
liudaoru
  • 浏览: 1560695 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

nuttcp(8) - 网络测速工具

 
阅读更多

http://linux.die.net/man/8/nuttcp

 

 

Name

nuttcp - network performance measurement tool

Synopsis

nuttcp -h
nuttcp -V
nuttcp -t
 [ -bdDsuv ] [ -cdscp_value ] [ -lbuffer_len ] [ -nnum_bufs ]

-wwindow_size ] [ -wsserver_window ] [ -wb ]
-pdata_port ] [ -Pcontrol_port ]
-Nnum_streams ] [ -Rxmit_rate_limit [m|g] ]
-Txmit_timeout [m] ] host [ < input ]
nuttcp -r [ -bBdsuv ] [ -cdscp_value ] [ -lbuffer_len ] [ -nnum_bufs ]
-wwindow_size ] [ -wsserver_window ] [ -wb ]
-pdata_port ] [ -Pcontrol_port ]
-Nnum_streams ] [ -Rxmit_rate_limit [m|g] ]
-Txmit_timeout [m] ] [ host ] [ > output ]
nuttcp -S [ -Pcontrol_port ]
nuttcp -1
 [ -Pcontrol_port ]

Description

nuttcp is a network performance measurement tool intended for use by network and system managers. Its most basic usage is to determine the raw TCP (or UDP) network layer throughput by transferring memory buffers from a source system across an interconnecting network to a destination system, either transferring data for a specified time interval, or alternatively transferring a specified number of buffers. In addition to reporting the achieved network throughput in Mbps, nuttcp also provides additional useful information related to the data transfer such as user, system, and wall-clock time, transmitter and receiver CPU utilization, and loss percentage (for UDP transfers).

nuttcp is based on nttcp, which in turn was an enhancement by someone at Silicon Graphics (SGI) on the original ttcp, which was written by Mike Muuss at BRL sometime before December 1984, to compare the performance of TCP stacks by U.C. Berkeley and BBN to help DARPA decide which version to place in the first BSD Unix release. nuttcp has several useful features beyond those of the basic ttcp/nttcp, such as a server mode, rate limiting, multiple parallel streams, and timer based usage. nuttcp is also continuing to evolve to meet new requirements that arise and to add desired new features. nuttcp has been successfully tested and used on a variety of Solaris, SGI, and PPC/X86 Linux systems, and should probably work fine on most flavors of Unix.

There are two basic modes of operation for nuttcp. The original or classic mode is the transmitter/receiver mode, which is also the way the original ttcp and nttcp worked. In this mode, a receiver is first initiated on the destination host using "nuttcp -r", and then a transmitter must be started on the source host using "nuttcp -t". This mode is somewhat deprecated and is no longer recommended for general use. The preferred and recommended mode of operation for nuttcp is the new client/server mode. With this mode, a server is first started on one system using "nuttcp -S" (or "nuttcp -1"), and then a client may either transmit data to (using "nuttcp -t") or receive data from (using "nuttcp -r") the server system. All the information provided by nuttcp is reported by the client, including the information from the server, thus providing a full snapshot of both the transmitter and receiver ends of the data transfer.

The server may be started by a normal, non-privileged user by issuing either a "nuttcp -S" or a "nuttcp -1" command. However, the optimal and recommended method of running a server is to run "nuttcp -S" via the inetd/xinetd daemon. This method has several significant advantages, including being more robust, allowing multiple simultaneous connections, and providing for access control over who is allowed to use the nuttcp server via the hosts.allow (and hosts.deny) file. By default, the nuttcp server listens for commands on port 5000, and the actual nuttcp data transfers take place on port 5001.

The host parameter must be specified for the transmitter, and provides the host name or IP address of the receiver. In classic transmitter/receiver mode, the host parameter may not be specified for the receiver. In client/server mode, when the client is the receiver, the host parameter specifies the host name or IP address of the transmitter (server).

Normally, a nuttcp data transfer is memory-to-memory. However, by using the "-s" option, it is possible to also perform memory-to-disk, disk-to-memory, and disk-to-disk data transfers. Using the "-s" option with the transmitter will cause nuttcp to read its data from the standard input instead of using a prefabricated memory buffer, while using the "-s" option on the receiver causes nuttcp to write its data to standard output. All these types of data transfers are possible with the classic transmitter/receiver mode. For security reasons, the "-s" option is disabled on the server, so it is not possible to access the disk on the server side of a data transfer.

The allowed options to nuttcp are:

Options

-h

Print out a usage statement. Running nuttcp with no arguments will also produce a usage statement.

-V

Prints the nuttcp version number. The nuttcp version is also printed as part of the normal nuttcp output when the "-v" verbose output is used (but not when using the default brief output). In client/server mode, the version number of both the client and server is identified.

-t

Indicates that this nuttcp is the transmitter. In client/server mode, this means the server specified by the host parameter is the receiver.

-r

Indicates that this nuttcp is the receiver. In client/server mode, this means the server specified by the host parameter is the transmitter.

-S

Indicates that this nuttcp is the server. The only option that may be specified to the server is the "-P" option, which allows one to change the control port used by the server, but only when the server is started by a normal, non-privileged user. When the server is initiated by inetd/xinetd, the server control port should be specified in the services file.

-1

Basically the same as the "-S" option, but indicates a one-shot server, i.e. the server exits after the first data transfer initiated by a client. The "-1" option should only be used when the server is started by a normal, non-privileged user. This option will probably rarely need to be used, but can be useful for a quick test and eliminates the possibilty of leaving a non-access controlled nuttcp server running on the system (which can happen when using the "-S" option and forgetting to kill the nuttcp server after finishing a series of tests).

-b

Produce brief one-line output, which includes the amount of data transferred in MB (1024**2 bytes), the time interval in seconds, the TCP (or UDP) network throughput in Mbps (millions of bits per second), the transmitter and/or receiver CPU utilization, and for UDP data transfers also outputs the loss percentage. In client/server mode, most of the printed statistics are from the viewpoint of the receiver. This is the default output format.

-B

This option is only valid for the receiver, and forces the receiver to read a full buffer (as specified by the "-l" buffer length option) from the network. It is mainly intended to be used with the "-s" option to only output full buffers to standard output (e.g. for use with tar). It is also implicitly set whenever the number of streams as specified by the "-N" option is greater than 1. This option is not passed to the server.

-d

For TCP data transfers, sets the SO_DEBUG option on the data socket. This option is not passed to the server. It is a rarely used option which may possibly be removed or renamed in a future version of nuttcp.

-D

This option is only valid for the transmitter, and only for TCP data transfers, in which case it sets the TCP_NODELAY option on the data socket, which turns off the Nagle algorithm causing data packets to be sent as soon as possible without introducing any unnecessary delays. This option is not passed to the server. It is a rarely used option which may possibly be removed or renamed in a future version of nuttcp.

-s

Setting the "-s" option causes nuttcp to either read its data from standard input rather than using prefabricated memory buffers (for "nuttcp -t"), or to write its data out to standard output (for "nuttcp -r"). The "-s" option is disabled for security reasons on the server.

-u

Use UDP for the data transfer instead of the default of TCP.

-v

Verbose output that provides some additional information related to the data transfer. In client/server mode, the server is always verbose (implicit "-v" option), but the client controls the extent and type of output via the "-v" and "-b" options.

-cdscp_value
Sets the socket option to support COS. Either takes a dscp value or with the t|T modifier it takes the full TOS field.
-lbuffer_len
Length of the network write/read buffer in bytes for the transmitter/receiver. It defaults to 64 KB (65536) for TCP data transfers and to 8 KB (8192) for UDP. For client/server mode, it sets both the client and server buffer lengths.
-nnum_bufs
Specifies the number of source buffers written to the network (default is unlimited), and is ignored by the receiver. For client/server mode, if the client issues a "nuttcp -r" command making it the receiver, this parameter is passed to the server since the server is the transmitter in this case. This parameter is also ignored if the "-s" parameter is specified to the transmitter.
-wwindow_size
Indicates the window size in KB of the transmitter (for "nuttcp -t") or receiver (for "nuttcp -r"). Actually, to be technically correct, it sets the sender or receiver TCP socket buffer size, which then effectively sets the window size. For client/server mode, both the transmitter and receiver window sizes are set. The default window size is architecture and system dependent. Note recent Linux systems, out of a misguided desire to be helpful, double whatever window size is actually specified by the user (this is not a bug with nuttcp but a bug/feature of the Linux kernel). Also, with these Linux systems, the actual window size that's used on the intervening network, as observed with tcpdump, is greater than the requested window size, but less than the doubled value set by Linux.
-wsserver_window
For client/server mode, the "-ws" option provides a mechanism for setting a different window size on the server than the client window size as specified with the "-w" option.
-wb

Normally, to conserve memory, the transmitter only sets the TCP send socket buffer size and the receiver only sets the TCP receive socket buffer size. However, if the "-wb" option is used, the transmitter will also set the TCP receive socket buffer size and the receiver will also set the TCP send socket buffer size. Under normal circumstances, this should never be necessary. This option was implemented because certain early braindead Solaris 2.8 systems would not properly set the TCP window size unless both the TCP send and receive socket buffer sizes were set (later Solaris 2.8 systems have corrected this deficiency). Thus the 'b' in this option can stand either for "braindead" or "both".

-pdata_port
Port number used for the data connection, which defaults to port 5001. If multiple streams are specified with the "-N" option, the "-p" option specifies the starting port number for the data connection. For example, if four streams are specified using the default data connection port number, nuttcp will use ports 5001, 5002, 5003, and 5004 for the four TCP (or UDP) connections used to perform the data transfer.
-Pcontrol_port
For client/server mode, specifies the port number used for the control connection between the client and server, and defaults to port 5000. On the server side, the "-P" option should only be used when the server is started manually by the user. If the server is started by inetd/xinetd (the preferred method), the control connection must be specified by adding a nuttcp entry to the services file.
-Nnum_streams
Species the number of parallel TCP (or UDP) data streams to be used for the data transfer, with the default being a single data stream. The maximum number of parallel data streams that can be used is 128. If the number of streams is greater than one, the "-B" option is implicitly set. The current implementation does not fork off separate processes for each data stream, so specifying multiple streams on an SMP machine will not take advantage of its multiple processors. Of course it is always possible to run multiple nuttcp commands in parallel on an SMP system to determine if there is any advantage to running on multiple processors. This is especially simple to do when running in client/server mode when the server is started from the inetd/xinetd daemon. When running multiple nuttcp commands in parallel, the "-T" transmitter timeout option may be used to insure that all the nuttcp commands finish at approximately the same time.
-Rxmit_rate_limit[m|g]
The transmitter rate limit throttles the speed at which the transmitter sends data to the network, and by default is in Kbps, although the 'm' or 'g' suffix may be used to specify Mbps or Gbps. This option may be used with either TCP or UDP data streams. Because of the way this option is currently implemented, it will consume all the available CPU on the transmitter side of the connection so the "%TX" stats are not meaningful when using the rate limit option. By default the rate limit is applied to the average rate of the data transfer in real time, and not in CPU time, so if nuttcp is switched out of the processor for any reason, when it is switched back in, it is possible that the instantaneous rate may momentarily exceed the specified value. There is an 'i' qualifier to the rate limit option (specified as "-Ri") that will restrict the instantaneous rate at any given point in time to the specified value, although in this case the final rate reported by nuttcp may be less than the specified value since nuttcp won't attempt to catch up if other processes gain control of the CPU. The default is no rate limit. Note another way to throttle the throughput of TCP data streams is to reduce the window size.
-Txmit_time_limit[m]
Limits the amount of time that the transmitter will send data to the specified number of seconds, or number of minutes if the 'm' suffix is used. Normally a data transfer will either specify a fixed amount of data to send using the "-n" option, or a fixed period of time to send using the "-T" option. However, if both the "-n" and "-T" options are used, the data transfer will be stopped by whichever option takes affect first. The default is a 10 second time limit for the data transfer.

Usage

Under Construction

For now, consult the README file for basic usage guidelines.

Examples

Under Construction

For now, see the examples.txt file for some examples of using nuttcp.

See Also

ping(8), traceroute(8), tracepath(8), pathchar(8), netstat(1), mtrace(8)

Authors

Developed by Bill Fink based on nttcp which in turn was an enhancement of the original ttcp developed by Mike Muuss at BRL. IPv6 capability and some other fixes and enhancements contributed by Rob Scott. Many useful suggestions and testing performed by Phil Dykstra and others.

The current version is available via anonymous ftp from:

ftp://ftp.lcp.nrl.navy.mil/pub/nuttcp/
The authors can be reached at nuttcp@lcp.nrl.navy.mil.

Bugs

Please send bug reports to nuttcp-bugs@lcp.nrl.navy.mil.

分享到:
评论

相关推荐

    nuttcp-probe-smokeping:Nuttcp IP吸烟性能探头

    nuttcp探针烟熏的IP性能探头 。 可用于简单的带宽测量,或使用不同的特性来模拟不同类型的IP流量。 例如用于SIP的RTP媒体,不同QoS类别内的性能等。 设置测试时,请进行一些计算,以便您确信它们不会重叠。 如果对...

    iperf:iperf3:一种TCP,UDP和SCTP网络带宽测量工具

    iperf3还具有其他工具(例如nuttcp和netperf)中发现的许多功能,但是原始iperf中却没有这些功能。 例如,其中包括零复制模式和可选的JSON输出。 注意,iperf3与原始iperf向后不兼容。 iperf3的主要开发在CentOS ...

    goben:goben是一个golang工具,用于测量主机之间的TCPUDP传输层吞吐量

    戈本 goben是一个golang工具,用于测量主机之间的TCP / UDP传输层吞吐量。... 后来我找到了另一个名为nuttcp的惊人工具。 可以在这里阅读有关nepim和nuttcp的信息: nepim和nuttcp 。 goben旨在解决nepim的缺点:

    安装NumPy教程-详细版

    附件是安装NumPy教程_详细版,文件绿色安全,请大家放心下载,仅供交流学习使用,无任何商业目的!

    语音端点检测及其在Matlab中的实现.zip

    语音端点检测及其在Matlab中的实现.zip

    C#文档打印程序Demo

    使用C#完成一般文档的打印,带有页眉,页脚文档打印,表格打印,打印预览等

    DirectX修复工具-4-194985.zip

    directx修复工具 DirectX修复工具(DirectX repair)是系统DirectX组件修复工具,DirectX修复工具主要是用于检测当前系统的DirectX状态,若发现异常情况就可以马上进行修复,非常快捷,使用效果也非常好。

    Python手动实现人脸识别算法

    人脸识别的主要算法 其核心算法是 欧式距离算法使用该算法计算两张脸的面部特征差异,一般在0.6 以下都可以被认为是同一张脸 人脸识别的主要步骤 1 获得人脸图片 2 将人脸图片转为128D的矩阵(这个也就是人脸特征的一种数字化表现) 3 保存人脸128D的特征到文件中 4 获取其他人脸转为128D特征通过欧式距离算法与我们保存的特征对比,如果差距在0.6以下就说明两张脸差距比较小

    全国大学生信息安全竞赛知识问答-CISCN 题库.zip

    ciscn 全国大学生信息安全竞赛知识问答-CISCN 题库.zip

    JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译).zip

    JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)JAVA+SQL离散数学题库管理系统(源代码+LW+外文翻译)

    strcmp函数应用.zip

    strcmp函数应用.zip

    蓝桥杯单片机第十一届国赛设计题试做

    蓝桥杯单片机第十一届国赛设计题试做

    基于MATLAB的pca人脸识别.zip

    基于MATLAB的pca人脸识别.zip

    520.html

    520.html

    JAVA在线考试管理系统(源代码+LW+开题报告+外文翻译+英文文献+答辩PPT).zip

    JAVA在线考试管理系统(源代码+LW+开题报告+外文翻译+英文文献+答辩PPT)

    STR710的定时器编程C语言例子,开发环境为IAR EWARM。.zip

    STR710的定时器编程C语言例子,开发环境为IAR EWARM。.zip

    基于物品的协同过滤推荐算法(Python).zip

    协同过滤算法(Collaborative Filtering)是一种经典的推荐算法,其基本原理是“协同大家的反馈、评价和意见,一起对海量的信息进行过滤,从中筛选出用户可能感兴趣的信息”。它主要依赖于用户和物品之间的行为关系进行推荐。 协同过滤算法主要分为两类: 基于物品的协同过滤算法:给用户推荐与他之前喜欢的物品相似的物品。 基于用户的协同过滤算法:给用户推荐与他兴趣相似的用户喜欢的物品。 协同过滤算法的优点包括: 无需事先对商品或用户进行分类或标注,适用于各种类型的数据。 算法简单易懂,容易实现和部署。 推荐结果准确性较高,能够为用户提供个性化的推荐服务。 然而,协同过滤算法也存在一些缺点: 对数据量和数据质量要求较高,需要大量的历史数据和较高的数据质量。 容易受到“冷启动”问题的影响,即对新用户或新商品的推荐效果较差。 存在“同质化”问题,即推荐结果容易出现重复或相似的情况。 协同过滤算法在多个场景中有广泛的应用,如电商推荐系统、社交网络推荐和视频推荐系统等。在这些场景中,协同过滤算法可以根据用户的历史行为数据,推荐与用户兴趣相似的商品、用户或内容,从而提高用户的购买转化率、活跃度和社交体验。 未来,协同过滤算法的发展方向可能是结合其他推荐算法形成混合推荐系统,以充分发挥各算法的优势。

    JAVA文件传输(lw+源代码).zip

    FTP(File Transfer Protocol)是文件传输协议的简称。 FTP的主要作用,就是让用户连接上一个远程计算机(这些计算机上运行着FTP服务器程序)查看远程计算机有哪些文件,然后把文件从远程计算机上拷到本地计算机,或把本地计算机的文件送到远程计算机去。 目前FTP服务器软件都为国外作品,例如Server_U、IIS,国内成熟的FTP服务器软件很少,有一些如(Crob FTP Server),但从功能上看来远不能和那些流行的服务器软件媲美。

    python项目源码-深度学习tensorflow的滚动轴承故障诊断方法源码(高分大作业).rar

    本项目基于深度学习TensorFlow框架,针对滚动轴承故障诊断方法进行研究。项目采用了卷积神经网络(CNN)对轴承振动信号进行特征提取和分类,实现了对滚动轴承不同故障类型的自动诊断。 在技术实现上,项目利用TensorFlow搭建了一个高效的CNN模型,通过多层卷积、池化操作以及全连接层,自动学习轴承振动信号中的故障特征。同时,采用交叉熵损失函数优化模型参数,提高故障识别率。此外,项目还集成了数据预处理、模型训练、测试评估等功能模块,方便用户快速上手并进行实验研究。 经过运行测试,该项目代码运行稳定,诊断效果良好,可广泛应用于滚动轴承故障诊断领域。对于计算机相关专业的在校学生、老师或企业员工来说,该项目是一份难得的高分大作业资源,同时也是小白学习和实际项目借鉴的优秀参考资料。请放心下载使用,为您的学习和工作提供帮助!

    超详细的SpringBoot框架入门教程 Spring Boot框架快速入门教程以大量示例讲解了Spring Boot在各类情境

    超详细的SpringBoot框架入门教程 Spring Boot框架快速入门教程以大量示例讲解了Spring Boot在各类情境中的应用,让大家可以跟着老师的思维和代码快速理解并掌握。适用于Java 开发人员,尤其是初学Spring Boot的人员和需要从传统 Spring 转向 Spring Boot 开发的技术人员。 下边是动力节点的SpringBoot教程非常适合初学入门,讲的非常详细,而且全程无废话!

Global site tag (gtag.js) - Google Analytics